Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation.

نویسندگان

  • Gilad A Jacobson
  • Iddo Lev
  • Yosef Yarom
  • Dana Cohen
چکیده

Complex movements require accurate temporal coordination between their components. The temporal acuity of such coordination has been attributed to an internal clock signal provided by inferior olivary oscillations. However, a clock signal can produce only time intervals that are multiples of the cycle duration. Because olivary oscillations are in the range of 5-10 Hz, they can support intervals of approximately 100-200 ms, significantly longer than intervals suggested by behavioral studies. Here, we provide evidence that by generating nonzero-phase differences, olivary oscillations can support intervals shorter than the cycle period. Chronically implanted multielectrode arrays were used to monitor the activity of the cerebellar cortex in freely moving rats. Harmaline was administered to accentuate the oscillatory properties of the inferior olive. Olivary-induced oscillations were observed on most electrodes with a similar frequency. Most importantly, oscillations in different recording sites retained a constant phase difference that assumed a variety of values in the range of 0-180 degrees, and were maintained across large global changes in the oscillation frequency. The inferior olive may thus underlie not only rhythmic activity and synchronization, but also temporal patterns that require intervals shorter than the cycle duration. The maintenance of phase differences across frequency changes enables the olivo-cerebellar system to replay temporal patterns at different rates without distortion, allowing the execution of tasks at different speeds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-referential phase reset based on inferior olive oscillator dynamics.

The olivo-cerebellar network is a key neuronal circuit that provides high-level motor control in the vertebrate CNS. Functionally, its network dynamics is organized around the oscillatory membrane potential properties of inferior olive (IO) neurons and their electrotonic connectivity. Because IO action potentials are generated at the peaks of the quasisinusoidal membrane potential oscillations,...

متن کامل

Spatio-temporal aspects of information processing in the cerebellar cortex

The cerebellum is a phylogenetically ancient part of the vertebrate brain, which is crucial for accurately timing complex motor tasks. Accumulating evidence suggests that the cerebellum is also involved in other tasks, such as sensory processing and cognitive tasks. The role of the cerebellum in this diverse set of tasks is heatedly debated. The cerebellum has been suggested to...

متن کامل

Properties of the Nucleo-Olivary Pathway: An In Vivo Whole-Cell Patch Clamp Study

The inferior olivary nucleus (IO) forms the gateway to the cerebellar cortex and receives feedback information from the cerebellar nuclei (CN), thereby occupying a central position in the olivo-cerebellar loop. Here, we investigated the feedback input from the CN to the IO in vivo in mice using the whole-cell patch-clamp technique. This approach allows us to study how the CN-feedback input is i...

متن کامل

Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction.

The cerebellum can be viewed as supporting two distinct aspects of motor execution related to a) motor coordination and the sequence that imparts such movement temporal coherence and b) the reorganization of ongoing movement when a motor execution error occurs. The former has been referred to as "motor time binding" as it requires that the large numbers of motoneurons involved be precisely acti...

متن کامل

Temporal Variation Pattern of Runoff Generation and Rill Erosion in Different Soils and Slope Gradients

This study was conducted to investigate the temporal variations of runoff and rill erosion in various soil textures under different slope gradients. So, a laboratory experiment was set up in three soil textures (loam, clay loam, and sandy clay loam) and four slope gradients (5, 10, 15, and 20%) using the completely randomized design with three replications. Runoff production and rill erosion we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 9  شماره 

صفحات  -

تاریخ انتشار 2009